ASSP
 SWITCHING REGULATOR CONTROLLER

MB3775

■ LOW VOLTAGE DUAL PWM SWITCHING REGULATOR CONTROLLER

The MB3775 is a dual pulse-width-modulation control circuit. It contains the basic circuits required for two PWM control circuits. Complete synchronization is obtained by using the same oscillator output waveform. This IC can provide following types of output voltage: step down, step up, and inverter. Power consumption is low, thus the MB3775 is ideal for use in high-efficiency portable equipment.

■ FEATURES

- Wide supply voltage range: 3.6 V to 18 V
- Low current consumption: 1.3 mA typical
- Wide oscillation frequency range: 1 kHz to 500 kHz
- On-chip timer latch short protection circuit
- On-chip under voltage lockout protection
- On-chip reference voltage: 1.28 V
- Variable dead time provides control over total operating range.

PACKAGES

(DIP-16P-M04)

16-pin plastic SSOP

(FPT-16P-M05)

16-pin plastic SOP

(FPT-16P-M06)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MB3775

PIN ASSIGNMENT

BLOCK DIAGRAM

OPERATION DESCRIPTION

1. Reference voltage

The reference voltage circuit generates a stable, temperature-compensated 2.5 V reference from Vcc (pin 9) for use by internal circuits.
A reference voltage of temperature compensated $1 / 2$ Vref can be obtained to external circuit by Vref terminal (pin 16).

2. Oscillator

A triangular waveform of any frequency is obtained by connecting an external capacitor and resistor to the C_{T} (pin 1) and RT terminals (pin 2).
The amplitude of this waveform is from 1.3 V to 1.9 V . The oscillator is internally connected to the non-inverting inputs of the PWM comparators. The oscillator waveform is available at the C_{T} terminal.

3. Error amplifiers

The error amplifier detects the output voltage of the switching regulator.
The common-mode input voltage range is -0.2 V to 1.45 V , so the input reference voltage can be set the $\mathrm{V}_{\text {ref }}$ and GND levels. Error amplifiers can be used as either inverting and non-inverting amplifiers.
The voltage gain is fixed. Phase compensation is possible by connecting a capacitor to the FB terminals (pins 5 and 12) of the error amplifiers.
The error amplifier output are internally connected to the inverting inputs of the PWM comparators and also to the short protection circuit.

4. Timer latch short protection circuit

The timer latch short protection circuit detects the output levels of the error amplifiers. If one or both error amplifier outputs are 1.1 V or lower, the timer circuit begins charging the externally connected protection enable capacitor. If the output level of the error amplifier does not drop below the normal voltage range before the capacitor voltage reaches the transistor base-emitter voltage $\mathrm{V}_{\mathrm{BE}}(\doteqdot 0.65 \mathrm{~V})$, the latch circuit turns the output drive transistor off and sets the dead time to 100%.

5. Under voltage lockout protection circuit

An ambiguous transition state at power-on or a momentary fluctuation in the supply line may result in loss of control and may adversely affect or even destroy the system. The under voltage lockout protection circuit compares the internal reference voltage level with the supply voltage level. If the supply voltage level falls below the reference level the latch circuit is reset the output drive transistor is turned off and the dead time is set to 100 $\%$. The protection enable terminal (pin 15) is pulled "Low".

6. PWM comparator

Each PWM comparator has two inverting inputs and one non-inverting input. This voltage-to-pulse-width converter controls the output pulse width according to the input voltage.
The PWM comparator turns the output drive transistor on when the oscillator triangular waveform is higher than the error amplifier output and the dead time control terminal voltage.

7. Output drive transistor

The open-collector output-drive transistors provide common-emitter output of 18 V dielectric capability. The output drive transistors can source up to 50 mA of drive current to the switching power transistor.

ABSOLUTE MAXIMUM RATING

*: The packages are mounted on the epoxy board ($4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 1.5 \mathrm{~mm}$).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	Vcc	3.6	6.0	18	V
Error Amp. Input Voltage	VI	-0.2	-	1.45	V
Collector Output Voltage	Vo	-	-	18	V
Collector Output Current	IO	0.3	-	50	mA
Phase Compensation Capacitor	CP	-	0.1	-	$\mu \mathrm{F}$
Timing Capacitor	CT	150	-	15000	pF
Timing Resistor	RT	5.1	-	100	$\mathrm{k} \Omega$
Oscillator Frequency	fOsC	1	-	500	kHz
Reference Voltage Output Current	IREF	-3	-1	-	mA
Operating Temperature	TOP	-30	25	85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

Parameter		condition	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=6 \mathrm{~V}\right.$)				
		Value		Unit				
		Min			Typ	Max		
Reference Section	Output Voltage		$\mathrm{IOR}=-1 \mathrm{~mA}$	VREF	1.26	1.28	1.30	V
	Output Temp. Stability		$\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	VRTC	-2	± 0.2	2	\%
	Input Stability	$\mathrm{Vcc}=3.6 \mathrm{~V}$ to 18 V	Line	-	2	10	mV	
	Load Stability	$\mathrm{IOR}=-0.1 \mathrm{~mA}$ to -1 mA	Load	-	1	7.5	mV	
	Short Circuit Output Current	Vref $=0 \mathrm{~V}$	Ios	-	-30	-10	mA	
Under Voltage Lockout Protection Section	Threshold Voltage	$\mathrm{IOR}=-0.1 \mathrm{~mA}$	V th	-	2.72	-	V	
		$\mathrm{IOR}=-0.1 \mathrm{~mA}$	VtL	-	2.60	-	V	
	Hysteresis Width	$\mathrm{IOR}=-0.1 \mathrm{~mA}$	VHYS	80	120	-	mV	
	Reset Voltage (Vcc)	-	VR	1.5	1.9	-	V	
Protection Circuit Section	Input Threshold Voltage	-	VtPC	0.60	0.65	0.7	V	
	Input Stand by Voltage	No pull up	VSTB	-	50	100	mV	
	Input Latch Voltage	No pull up	VI	-	50	100	mV	
	Input Source Current	-	lbpc	-1.4	-1.0	-0.6	$\mu \mathrm{A}$	
	Comparator Threshold Voltage	Pin 5, Pin 12	Vtc	-	1.1	-	V	
Triangular Waveform Oscillator Section	Oscillator Frequency	$\mathrm{CT}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=15 \mathrm{k} \Omega$	fosc	-	200	-	kHz	
	Frequency Deviation	$\mathrm{CT}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=15 \mathrm{k} \Omega$	fdev	-	10	-	\%	
	Frequency Stability (Vcc)	$\mathrm{Vcc}=3.6 \mathrm{~V}$ to 18 V	fdv	-	1	-	\%	
	Frequency Stability (Ta)	$\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	fdT	-4	-	4	\%	
Dead-Time Control Section	Input Threshold Voltage (fosc $=10 \mathrm{kHz}$)	Duty Cycle $=0 \%$	Vto	-	1.0	$\begin{aligned} & \text { VREF } \\ & -0.15 \end{aligned}$	V	
		Duty Cycle $=100 \%$	Vt100	0.2	0.4	-	V	
	Input Bias Current	-	lbdt	-	-0.2	-1	$\mu \mathrm{A}$	
	Latch Mode Source Current	$\mathrm{Vdt}=0.7 \mathrm{~V}$	ldt	-	-150	-80	$\mu \mathrm{A}$	
	Latch Input Voltage	$\mathrm{ldt}=-40 \mu \mathrm{~A}$	Vdt	$\begin{aligned} & \hline \text { VREF } \\ & -0.1 \end{aligned}$	-	-	V	

(Continued)

MB3775

(Continued)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=6 \mathrm{~V}\right)$

Parameter		condition	Sym-	Value			Unit	
		Min		Typ	Max			
Error Amp. Section	Input Offset Voltage		$\mathrm{Vo}=1.6 \mathrm{~V}$	Vıo	-10	-	+10	mV
	Input Offset Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	110	-100	-	+100	nA	
	Input Bias Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	IB	-500	-100	-	nA	
	Common Mode Input Voltage Range	$\mathrm{Vcc}=3.6 \mathrm{~V}$ to 18 V	VICR	-0.2	-	+1.45	V	
	Voltage Gain		Av	84	120	-	V/V	
	Frequency Band Width	$\mathrm{Av}=-3 \mathrm{~dB}$	BW	-	3	-	MHz	
	Common Mode Rejection Ratio		CMRR	60	80	-	dB	
	Max Output Voltage		Vom+	2.2	2.4	-	V	
			Vom-	-	0.7	0.9	V	
	Output Sink Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	lom+	24	50	-	$\mu \mathrm{A}$	
	Output Source Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	Іом-	-	-1.2	-0.7	mA	
PWM Comparator Section	Input Threshold Voltage	Duty Cycle $=0$ \%	Vto	-	1.9	2.1	V	
	(fosc=10 kHz)	Duty Cycle $=100 \%$	Vt100	1.05	1.3	-	V	
	Input Sink Current	Pin 5, Pin $12=1.6 \mathrm{~V}$	lin+	24	50	-	$\mu \mathrm{A}$	
	Input Source Current	Pin 5, Pin $12=1.6 \mathrm{~V}$	IIN-	-	-1.2	-0.7	mA	
Output Section	Output Leak Current	$\mathrm{Vo}=18 \mathrm{~V}$	Leak	-	-	10	$\mu \mathrm{A}$	
	Output Saturation Voltage	$\mathrm{IO}=50 \mathrm{~mA}$	VSAT	-	1.1	1.4	V	
Stand by Current		Output "OFF"	Iccs	-	1.3	1.8	mA	
Average Supply Current		$\mathrm{RT}=15 \mathrm{k} \Omega$	IcCa	-	1.7	2.4	mA	

TEST CIRCUIT

TIMING CHART (Internal Waveform)

APPLICATION CIRCUIT

Fig. 2 - Chopper Type Step Up/Inverting

(Continued)
(Continued)
Fig. 3-Chopper Type Step Up/Inverting (For High Speed)

Fig. 4 - Multi Output Type (Apply Transformer)

MB3775

HOW TO SET OUTPUT VOLTAGE

The output voltage is set using the connection shown in Fig. 5 and 6.
The error amplifiers are supplied to the internal reference voltage circuit as are the other internal circuits. The common-mode input voltage range is from -0.2 V to +1.45 V .
When the amplifiers are operated non-inverting, tie the inverting terminal to $\mathrm{V}_{\operatorname{REF}}(\doteqdot 1.28 \mathrm{~V}$). When the amplifiers are operated inverting, tie the non-inverting terminal to ground.

Fig. 5 -Connection of Error Amp. Output Voltage V_{0} is plus

Fig. 6 -Connection of Error Amp. Output Voltage V_{0} is minus

HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT PROTECTION CIRCUIT

TIMING CHART shows the configuration of the protection latch circuit.
Error amplifier outputs, are internally connected to the non-inverting inputs of the short-circuit protection comparator and are compared with the reference voltage (1.1 V) connected to the inverting input.
When the load condition of the switching regulator is stable, the error amplifier has no output fluctuation. Thus, short-circuit protection control is also kept in balance, and the protection enable terminal (pin 15) voltage is kept at about 50 mV .
If the load condition drastically changes due to a load short-circuit and if low-level signals (1.1 V or lower) are input to the non-inverting inputs of the short-circuit protection comparator from the error amplifiers, the shortcircuit protection comparator outputs a "Low" level to turn transistor Q_{1} off. The protection enable terminal voltage is discharged, and then the short-circuit protection comparator charges the externally connected protection enable capacitor $C_{P E}$ according to the following formula:

$$
\begin{aligned}
& V_{\text {PE }}=50 \mathrm{mV}+\mathrm{tPE} \times 10^{-6} / \mathrm{C}_{\text {PE }} \\
& 0.65=50 \mathrm{mV}+\mathrm{t} \text { PE } \times 10^{-6} / \mathrm{C}_{\text {PE }} \\
& \mathrm{C}_{\text {PE }}=\mathrm{tPE} / 0.6(\mu \mathrm{~F})
\end{aligned}
$$

When the protection enable capacitor charges to about 0.65 V , the protection latch is set to enable the under voltage lockout protection circuit and to turn the output drive transistor off. The dead time is set to 100%.
Once the under voltage lockout protection circuit is enabled, the protection enable is released; however, the protection latch is not reset if the power is not turned off.
The non-inverting inputs of the D.T.C. comparator are connected to the D.T.C. terminals (pins 6 and 11) through the power supply (about 0.9 V) and are compared with a reference voltage (about 1.8 V) connected to the inverting input.
To prevent malfunction of the short protection circuit in soft-start mode (using D.T.C. terminals), the D.T.C. comparator outputs a "High" level to turn Q2 on until the D.T.C. terminal voltage drops to about 0.9 V .

Fig. 7 - Protection Latch Circuit

MB3775

SYNCHRONIZATION OF ICs

To synchronize MB3775 ICs, first, the specified capacitor and resistor are connected to the Cт and Rt terminals of the master IC to start self oscillation. Next, 2 V is applied to the Rt terminals of the slave ICs to disable the charge/discharge circuit for triangular wave oscillation. Finally, the C_{τ} terminals of the master and slave ICs are connected.
Instead of applying $V_{R T}$ to the R_{T} terminals, these terminals can be pulled up by a resistor (see resistance indicated by the dashed line in Fig. 8). Select the pull-up resistance Rpull from the formula given below.

$$
\begin{array}{ll}
\frac{\text { Vcc }}{0.5 \times \mathrm{N}} \leq \text { Rpull } & \begin{array}{l}
\text { Rpull: Pull up Resistor }(\mathrm{k} \Omega) \\
\text { Vcc: Power Supply Voltage (V) } \\
\mathrm{N}: \quad \text { Number of Slave ICs }
\end{array}
\end{array}
$$

Fig. 8 - Connection of Master, Slave

TYPICAL PERFORMANCE CHARACTERISTICS

Fig. 9 - Power supply voltage vs. Reference voltage

Fig. 11 - Power supply voltage vs. Stand by current

Fig. 13-Collector saturation voltage vs. Sink current

Fig. 10 - Power supply voltage vs. Average supply current

Fig. 12 - Reference voltage vs. Temp.

Fig. 14 - Error Amp. Max output voltage vs. Frequency

Fig. 15 - Timing resistor vs. Oscillation Frequency

Fig. 17 - Timing capacitor vs. Triangular waveform Max Amplitude voltage

Fig. 19 - Frequency vs. Gain/Phase (Actual Data)

Fig. 16 - Triangular waveform cycle vs. Timing capacitor

Fig. 18 - Frequency vs. Gain/Phase

Fig. 20 - Frequency vs. Gain/Phase (Actual Data)

(Continued)

Fig. 21 - Frequency vs. Gain/Phase (Actual Data)

APPLICATION

1. How to set the error amplifier frequency characteristic

Figure 22 shows the equivalent circuit of the error amplifier.
The frequency characteristic of the error amplifier is set by R_{1}, R_{2}, and C_{p}. The high-frequency gain is set by the ratio of resistors R_{1} and R_{2} in the IC (set value $\fallingdotseq 0 \mathrm{~dB}$).
When $\mathrm{C}_{\mathrm{p}}=0.1 \mu \mathrm{~F}$, the gain at $20 \mathrm{kHz} \leq \mathrm{f} \leq 5 \mathrm{MHz}$ is about 0 dB . The roll-off frequency is adjusted by changing external phase compensating capacitor C_{p} (see Fig. 24).
When high frequency gain is needed or the phase must be advanced at a low frequency, connect a resistor Rp between the FB terminal and $\mathrm{Cp}_{\text {p }}$ as shown in Figure 23 (see Fig. 25).

Fig. 22 - Error Amp. Equivalent Circuit

Fig. 23 - Error Amp. Equivalent Circuit (Insert Rp)

Note: As shown above, the frequency characteristic of the error amplifier is set by the external phase compensating capacitor CP.
When a ceramic chip capacitor must be used to meet the requirements of a small system, be careful of its temperature characteristic. $\left(-30^{\circ} \mathrm{C} \doteqdot 1 / 5\right.$ and $+80^{\circ} \mathrm{C} \fallingdotseq 1 / 3$ for the frequency characteristic, so a sufficient phase margin must be allowed for at room temperature.) Ceramic chip capacitors with a low temperature characteristic (B characteristic) or film capacitors are recommended (see Fig. 26 to 28).

Fig. 24 - Error Amp. Frequency characteristics

Fig. 25 - Error Amp. Frequency characteristics

Fig. 26 - Ceramic Chip Capacitor ($0.1 \mu \mathrm{~F}$)

Fig. 27 - Tantal Capacitor ($0.33 \mu \mathrm{~F}$)

Fig. 28 - Film Capacitor ($0.1 \mu \mathrm{~F}$)

2. Effect of equivalent series resistance of smoothing capacitor

The equivalent series resistance (ESR) of the smoothing capacitor in the DC/DC converter greatly affects the loop phase characteristic.
A smoothing capacitor with a low ESR reduces system stability by increasing the phase shift in the high-frequency region (see Fig. 30). Therefore, a smoothing capacitor with a high ESR will improve system stability. Be careful when using low ESR semiconductor electrolytic capacitors (OS-CON) and tantalum capacitors.

Fig. 29 - Step Down DC/DC Converter Basic Circuit

Fig. 30 - Gain vs. Frequency

Fig. 31 - Phase vs. Frequency

Reference data

If an aluminum electrolytic smoothing capacitor ($\operatorname{Rc} \doteqdot 1.0 \Omega$) is replaced with a low ESR semiconductor electrolytic capacitor (OS-CON: Rc $\fallingdotseq 0.2 \Omega$), the phase shift is reduced by half (see Fig. 33 and 34).

3. Measures for ensuring system stability when a low ESR smoothing capacitor is used

When a low ESR smoothing capacitor is used in the DC/DC converter, only the L and C are apparent even in the high-frequency region, and the phase is delayed by almost 180°. Consequently, the system phase margin and stability are reduced. On the other hand, a low ESR capacitor is needed to reduce the amount of output ripple. This is contrary to the system stability explained above.
To solve this problem, phase compensation can be used. This method increases the phase margin by advancing the phase when the phase margin is reduced by a low ESR capacitor.
The three suggestions listed below are recommended for DC/DC converters using the MB3775.
(1) As shown in Fig. 35, a capacitor is connected in parallel with the output feedback resistor to advance the phase. Use the formula below as a guideline for the capacitance.

Unstable Frequency (See Fig. 32)

Fig. 35 - External circuit example1 to advance the phase

Fig. 36 - DC/DC Converter +5 V output

(2) As shown in Figure 37, a resistor (R_{P}) is connected between the FB terminal and C_{p} of the error amplifier to advance the phase. The more Rp is increased, the more the phase is advanced. However, the gain in the high-frequency range is also increased, which causes instability. Therefore, select the optimum resistance (see Fig. 38).

Fig. 37 - External circuit example 2 to advance the phase

Fig. 38 - DC/DC Converter +5 V output

(3) As shown in Fig. 39, the phase is advanced by using both example 1 and 2 (Fig. 35 and 37).

Fig. 39 - External circuit example 3 to advance the phase

4. Error amplifier input ripple voltage

The boost circuit for charging the phase compensating capacitor C_{p} is connected to the error amplifier as shown in Figure 40 to protect against output voltage overload at power-on.
$\mathrm{A} \doteqdot 15 \mathrm{mV}$ offset voltage is provided for the negative input side so that the boost circuit only operates at poweron. When a capacitor is connected in parallel with the output feedback resistor, because the output ripple is too large or for advanced phase compensation, the boost circuit starts operating, which may degrade regulation if the differential input voltage of the error amplifier exceeds $\mp 15 \mathrm{mV}$. Be careful with the differential input voltage of the error amplifier.

MB3775

NOTES ON USE

- Take account of common impedance when designing the earth line on a printed wiring board.
- Take measures against static electricity.
- For semiconductors, use antistatic or conductive containers.
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
- The work table, tools and measuring instruments must be grounded.
- The worker must put on a grounding device containing $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ resistors in series.
- Do not apply a negative voltage
- Applying a negative voltage of -0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.

ORDERING INFORMATION

Part number	Package	Remarks
MB3775P	16-pin plastic DIP (DIP-16P-M04)	
MB3775PF	16-pin plastic SOP (FPT-16P-M06)	
MB3775PFV	16-pin plastic SSOP (FPT-16P-M05)	

PACKAGE DIMENSION

(Continued)

16-pin Plastic SOP
(FPT-16P-M06)

Note 1) *1: Resin protrusion. (Each side : +0.15 (.006) Max).
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder.

© 2002 FUJITSU LIMITED F16015S-C-4-7

Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

16-pin Plastic SSOP
(FPT-16P-M05)

Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches)
© 2003 FUJITSU LIMITED F160013S-C.4.6
Note : The values in parentheses are reference values.

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

